

Pipe Pile Wall with Jet Grouting Works

EXTERIOR SEISMIC RETROFIT Oakland – Alameda California

Trevilcos : WF George Dam AL-GA (USA) Jet grouting over water

Jet grouting over water was performed to improve the soil behind a submerged retaining wall

Drilling 2,400 lft - 68 Holes - 1,600 cy grouted

WEBSTER St. AND POSEY TUBES EXTERIOR SEISMIC RETROFIT PHASE II

- * Owner: State of California Department of Transportation
- * Contract #: 04-440144
- ***** General Contractor: **American Civil Construction West Coast Inc.**
- * Jet grouting Subcontractor: Wagner J.V. (TREVI ICOS Corporation)
- *Original contract amount : **\$ 30,780,055.00**

Webster St. And Posey tubes Project Location

The tubes became subject to review as part of the California Department of Transportation (Caltrans) recent seismic retrofit program. The Webster St. and Posey Tubes are two parallel tunnels that run beneath the Oakland Estuary in San Francisco Bay to connect Alameda Island with Oakland.

Webster St. And Posey tubes Project history - Description of the problem

"The tubes consist of precast concrete immersed tube segments connected to cast-in-place concrete cut-and-cover sections at the Oakland portals. When the tunnels were constructed (Posey Tube in the 1920s and Webster Street Tube in the 1960s), the immersed tube segments were placed over a 1.5-m (5-foot) layer of uncompacted clean sand in a trench excavated in the estuary floor. The backfill around Webster Street Tube consists of washed, poorly graded clean sand; the Posey Tube is embedded in soft clay (probably dredge spoil) with sand to sandy silt zones. Figure 1 shows a typical section of the Posey and Webster St. Tubes. "

(PB Network, Fall 1997 • Issue No. 40 • Volume XI • Number 4)

Project history Isolation Wall Principle

"Posey Tube. In the clay backfill of the Posey Tube, stone columns would be ineffective. We proposed an "isolation wall" of overlapping jet grout columns (Figure 4).."

Project Specifications Technical requirements

WEBSTER TUBE

Core recovery	%	≥ 85%
Strength@28	MPa	≥ 6.89
🗮 Unit weight	kg/m³	≥1842

POSEY TUBE

Core recovery	%	≥ 85%
Strength@28	MPa	≥ 4.13
🗯 Unit weight	kg/m³	≥1600

Tolerances

- ***** Ground heave: > 2.5 mm requires more frequent check
- ***** Placement of insertion of monitor:
 - × Horizontal tolerance: \pm 75 mm
 - × Vertical tolerance: ~ 0.8%

Jet Grouting Triple Fluid - Parameters

Range of grouting parameters utilized during treatment

	Withdrawal rate	cm/min	12 to 20
Droceuro		MPa	40 to 45
Ľ۳	Flessule	psi	5800 to 6525
MA			172 to 190
	Tiow fale	GPM	45 to 50
	Drassing at yours		5 to 8
AIR		psi	70 to 116
	Flow rate (Average)	<i>Vmin</i>	5000 to 7500
	W/C ratio		0.80
	Density	t/cum	1.60
5		MPa	22 to 32
	psi	3190 to 4640	
	Flow rate	1/min	270 to 330
TIOW Tale	TIOW TALE	GPM	72 to 88

Jet Grouting Work Performed – quantities

Location		Webster	Posey	Subtotal	Total
Land	Oak	112	195	307	950
Lanu	Ala	210	433	643	550
Water			535	535	535
		322	1163	1485	1485

DESCRIPTION	TUBE		Vertical JG length		
		SIDE	[meters]	Total [meters]	
WEBSTER ST		OAKLAND	1,000		
JET GROUTING ON LAND	TUBE	ALAMEDA	2700	3,700	
		OAKLAND	2,400		
	POSEY TUBE	TUBE ALAMEDA	5,100	7,500	
JET GROUTING OVER WATER	POSEY TUBE		7,300	7,300	
TREMIE PLATFORM	POSEY TUBE	ALAMEDA	350	350	
	•	•	10	050	

18.850

EQUIPMENT Jet grouting Rig: Soilmec SM 525

EQUIPMENT Jet grouting Rig: Soilmec Euro 40

EQUIPMENT Euro 40 Barge – Plan View

EQUIPMENT Euro 40 Barge

EQUIPMENT Euro 40 Barge- Section

TREVI

NA

POSITIONING SYSTEM 2 GPS

10 in CASING

SECONDARY SPOIL CONTAIMENT

10 X 80 Feet WORKING MOON POOL

EQUIPMENT Euro 40 Barge

EQUIPMENT SM 525 Barge – Plan View

EQUIPMENT SM 525 Barge

Quality Control Real time Monitoring – Satellital Positioning

Quality Control Core 590-591

SELA 22 PROJECT – NEW ORLEANS (USA)

NEW ORLEANS & surroundings are the perfect environment for the development of geotechnical solutions for:

□Poor overall mechanical properties of the foundation soils

□Abundance of organic layers

DExtremely shallow groundwater table

Depth of competent layers

Soil type	General description
Fill	Clay, organics and shell fragments
Lean Clay	Soft to very soft lean clay and silt, saturated
Silt; silty and clayey sand	Soft silts and silty fine sands, saturated
Sand	Fine to poorly graded gray sands

Simplified soil profile

	Dry density	Natural density	Water content	Organic content			
Soil Type	[g/cm ³]	[g/cm ³]	[%]	[%]	LL	PL	PI
S1 - Sensitive Clay	1.158	1.679	29.8÷56.5	2.60	33.7	19.3	14.3
S2 - Transition Layer	1.216	1.775	28.4÷54.8	2.73	29.5	19.5	10.0
S3 - Sand	1.603	1.839	14.7÷43.3	0.63			

Average geotechnical properties

SELA 22 PROJECT - NEW ORLEANS (USA)

Scope of work was the construction of a buried concrete box culvert

SELA 22 PROJECT – NEW ORLEANS (USA)

Ground improvement to replace soil between sheet piles with a soilcement mass in order to eliminate under-seepage and provide vertical and lateral support

Project Requirements

- 100% area replacement ratio
- 5% coring
- 1 QC test (UCS, HC) every 3 ft
- 100 PSI minimum UCS
- 1x10⁻⁶ cm/s maximum HC

SELA 22 PROJECT - NEW ORLEANS (USA)

Some numbers...

- •No. 2,401 JG column installed
- •Approx. 16 month of production from April '14 to July '15
- •No. 2 JG units used (since January `15)
- •Over 1,500 m of treatment
- •Over 57,000 cum of treatment (gross)
- •Over 46,000 cum of treatment (net)
- •Over 21,500 ton of binder used
- •Over 55,000 man-hours

SELA 22 PROJECT - NEW ORLEANS (USA)

Geometry

JET GROUTING EXECUTED WITH A VARIABLE SPEED OF THE RODS

If we vary the rods' rotation speed during the execution of the treatment, what do we obtain?

Vr2 < Vr1

RECENT DEVELOPMENTS

SELA 22 PROJECT - NEW ORLEANS (USA)

Quality Control

Real-time Monitoring of drilling and jetting parameters

 \sim

UCS (normalized 28d)

HC (normalized 28d)

14

16

18

SELA 22 PROJECT – NEW ORLEANS (USA)

14,0

16.0

18,0

Quality control

Coring and lab test (UCS and permeability test)

SELA 22 PROJECT – NEW ORLEANS (USA)

Elliptical vs. Traditional JG

□Increased Productivity

□less installations

□reduced overlap

 $\hfill \mathsf{\Box}\mathsf{reduced}$ binder consumption

TREVIGroup

CASE HISTORIES

SELA 22 PROJECT – NEW ORLEANS (USA)

Final Results

TREVI TURBO-MIX (single and double-axis)

Combines the injection of pre-set quantities of cement slurry at <u>high velocity</u> into the ground with the traditional mechanical mixing of the rotating blades.

The additional energy :

□greatly improves the quality of the mixing of the soil with the grout slurry.

Dmuch larger quantity of soil can be treated than by conventional soil mixing methods

□positive repercussions on production and costs.

LPV111 – New Orleans East

- Soil stabilization, settlement control, structural support (vertical & lateral)
- 1,300,000 cu.m of treated soil (21 m max depth)→ largest ever in western hemisphere (up to 8 rig on site)
- 460,000 ton of binder used \rightarrow enough to build a sidewalk from NOLA to Rome!

SR-90

LPV111 – New Orleans East

Coring Operations

0% failure in excess of 600 cores

TECHNICAL SPECIFICATION FOR ACCEPTANCE CRITERIA

6666

Core recovery:	>80%
Unmixed material or inclusion	<20%
Strength	100 psi @ 28 day
Allowable % UCS lower then design	10%

TREVIGroup

LPV111 – New Orleans East

SR83 over Choctawhatchee Bay- S. Rosa Beach, FL (ongoing)

- Ground stabilization, settlement control for causeway expansion
- Deep & Shallow Mixing Method Trevi Turbo Mix (double axis)
- 255,000 cy of treated soil (45 ft max depth, 98% area coverage) (random fill, sand, silt)

Deep Gro	and Impro	vemen	t		
	Asphalt &	Base Layer	rausa normality	In the second second	
		1n' Thic	k SMM	Rigid Pl	atform
		10			
TH W					
35' Deep					-
UMM COlumn			Bear	ing Layer	

Rehabilitation of Historical Structures – San Marco bell tower Venice (Italy)

The main reasons for a big success

- improve the mechanical and permeability features od a wide range of di soils (from gravels to peaty clays);
- obtain columns/panels of consolidated soil with diameter larger than 4 m and lenght deeper than 60 m (dams cut-off), starting from small-size drilling holes (i.e. ø 120÷200 mm);
- □ go through possible underground obstacles and obstractions (i.e. old foundations, blocks of rock etc.)
- perform treatment also within low-height and/or low-width spaces (i.e. inside cellars, courtyards, buildings etc.), by using small-size and low-weight drilling rigs.

THANK YOU FOR PAYING ATTENTION

www.trevigroup.com

www.trevispa.com

www.soilmec.com

www.drillmec.it

www.trevipark.com